

What Counts!

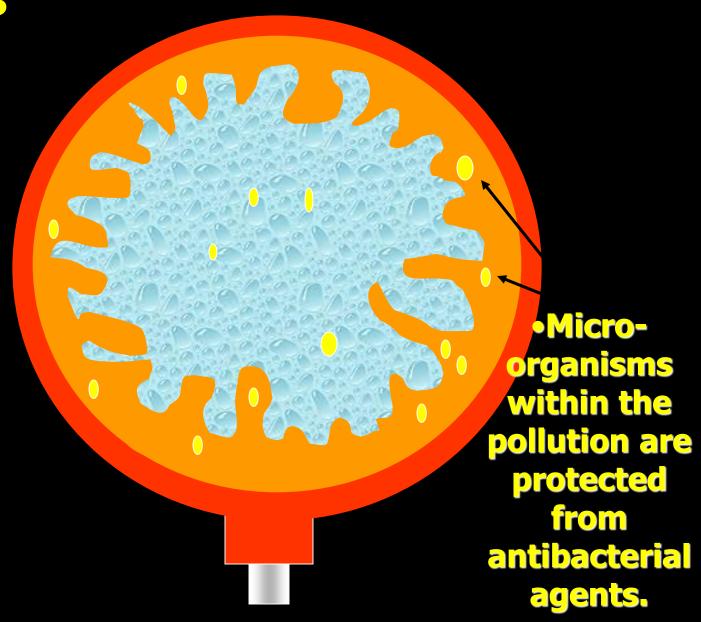
- Bacteria
- pH
- Minerals
- Sanitation
 - During the flock
 - Between flocks
- Monitoring

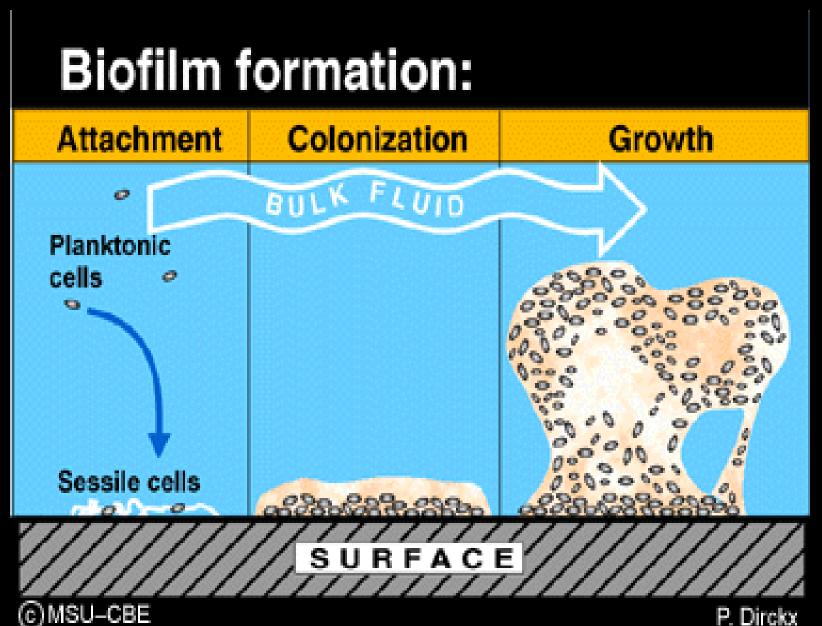
Pathogens in Water

- Many potential disease causing organisms:
 - bacteria- from human and animal feces
 - viruses- shed by infected animals
 - protozoan- Giardia best known
- Total coliform often measured as indicator
 - Usually originate in intestinal tract
 - Presence in water supply indicates waste contamination or surface contamination
 - Persists in water longer than other bacteria
 - Giardia and some viruses can last longer

Coliform Contamination

- Florida survey of poultry farm wells
- 48.5% positive for coliforms
- 3% positive for fecal coliforms
- In 24 hours at 90 ° F, single E. coli multiplies into more than 24 trillion


Total Bacteria Important Indicator

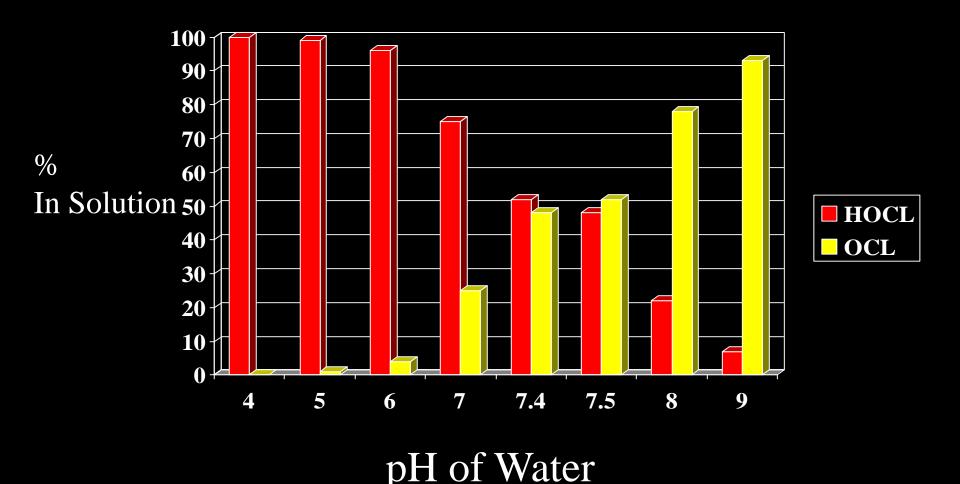

- Total Bacteria overlooked as a health threat
- Poor water line sanitation leads to biofilms
 - Thrives on vitamins and electrolytes
 - Low levels of some organic acids (citric)
 - Milk replacers (vaccination)
 - Minerals such as iron and sulfur
- Biofilms can protect pathogenic organisms
 - Salmonella can live for weeks in biofilms
- Cause air locks in lines (sulfur bacteria)
- Can return 2-3 days after cleaning

Bacteria Levels in Water When in Doubt-Test!!

Farm	CFU/ml
A At well head	2,700
A At end of line	26,600
B At source (community)	203,000
B At end of line	2,340,000
C At source (community)	600
C At end of line	282,000
D– At well head	0
D– At end of line	4,775,000

BioFilms

As biofilms grow and change, they release organisms into water


When to Test for Bacteria

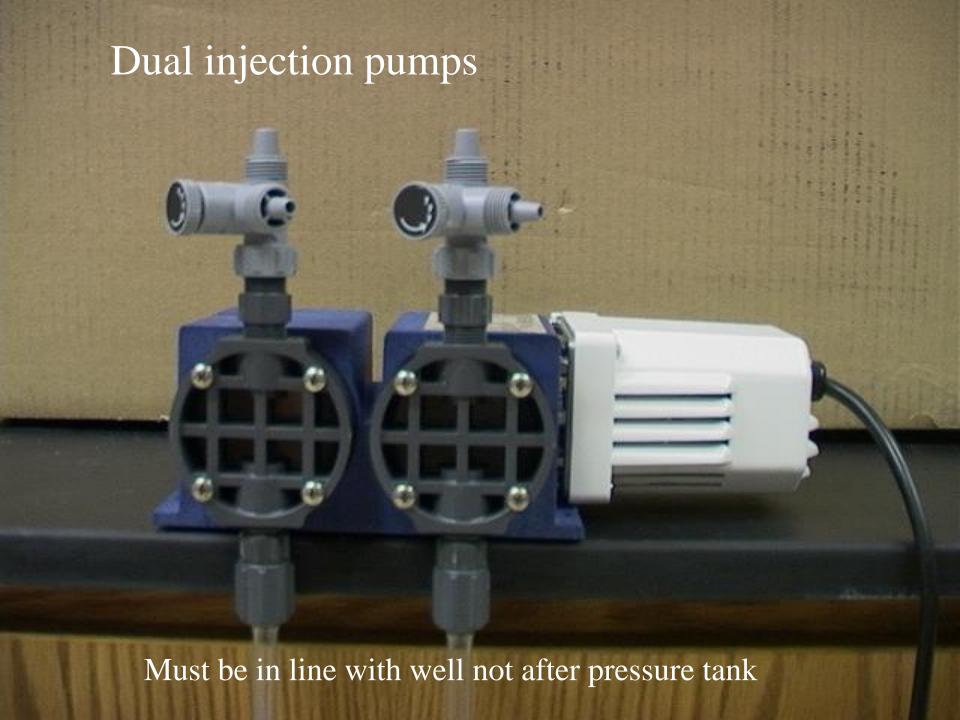
- Noticeable change in color, odor or taste
- Flooding has occurred near well
- Person or animal becomes sick from waterborne disease
- Maintenance on water supply system
- Persistent poor performance
- Loss of pressure in water system
- Unfortunately we rarely drink same water supply

Effect of pH on Water Quality

- pH scale measures how acidic or basic
- pH change of one indicates ten fold change
 - pH of 6 ten times more acidic than pH of 7
- pH of less than 6.5, corrosive water
- pH < 5.9,
 Once believed to cause poor performance
 - We now know birds tolerate pH 3
- pH > 8.0
 - Reduction in chlorine effect (chloric ions,)
- Chlorine most effective in pH 6.5 7.5

How pH Affects Chlorine Ratio of Hypochlorous Acid to Chloric Ion

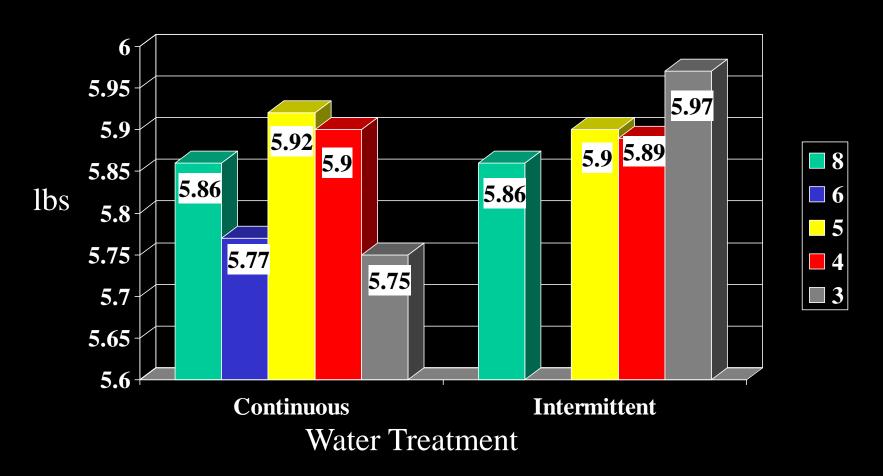
Hypochlorus Acid


- Hypochlorus acid is 80 times more effective as a sanitizer than chloric ion
- Free chlorine not considered effective unless it is 85 % Hypochlorus acid
- Forget the chemistry lesson:
- pH range of 4 to 6.5 is best when using chlorine sanitizers

NEVER!!

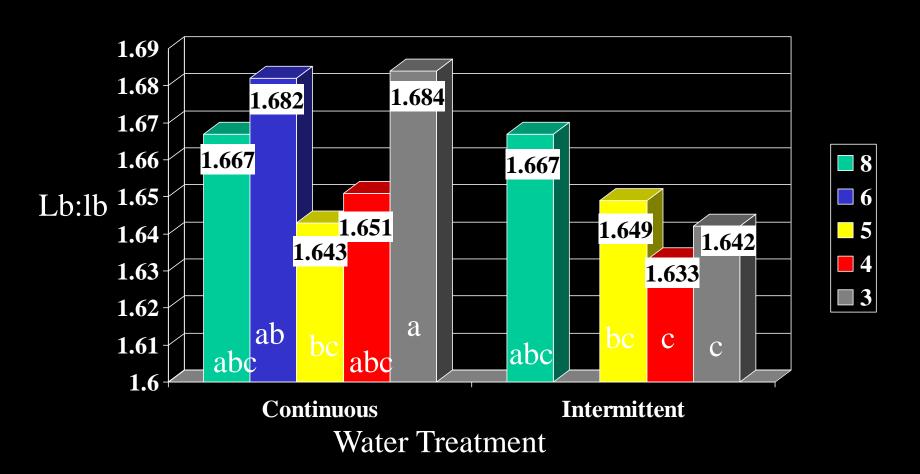
Mix bleach and acids in the same stock solution container

Growers have told me a green cloud chased them out of their medication rooms



Injecting Strong Acids Stenner Pump

- Different gpd to meet needs of any farm
- Change duckbill check valve-\$4.80
- Stenner.com
- Steve Sullivan
- 800-683-2378



Birds Tolerant of Low pH 42-Day Male Broiler Weights

PWT used to adjust the pH

Impact of pH on 42-Day Male Broiler Feed Conversion

PWT used to adjust the pH

Effect of Drinking Water pH on Broiler Digestive Tract

pН	3	4	5	6	Control
Crop	4.33c	4.34c	4.62b	4.95b	5.57a
Gizzard	3.62	3.72	3.70	3.95	4.16

PWT used to adjust water pH

The Rest of the Acid Story

- Acidifiers are not sanitizers
- Acidifiers need contact time and pH of 4 or less to damage or kill most bacteria
- During high water usage, contact time is minimal
- Can even get fungal blooms from low pH (thick slime)
- One size fits all directions for acidifiers may result in poor pH adjustment for high pH water

Take home message: Use acidifiers as part of a sanitation program not in replace of it

Water Acidification Not Enough

Product	рН	APC Count	
		CFU/ml	
Control	8	8.2 mil	
Citric Acid	7	5.6 mil	
CA	6	4.4 mil	
CA	5	4.0 mil	
of bacteria then	products li	ke citric acid may becom	e fo

5 minute exposure

Minerals

- Iron-red water
- Manganese- black solids
- Small quantity- bitter metallic taste for people
 - .3 ppm Fe-Iron
 - .05 ppm Mn-Manganese
- Birds not sensitive to mineral tastes
- Promote the growth of crenoform organisms
 - Form heavy gelatinous stringy masses that slough off
 - Reduces pipe volume
 - Clogs drinkers
- Iron promotes *Pseudomonas* and *E. coli*
- Mineral deposits cause drinkers to stick
- Chlorinate and then filter

Sulfur

• Sulfur

- Typically smells like a match head
- Black residue in water, on filters
- Will react with chlorine then can be filtered
- Will gas off if water held in storage tank and/or aerated

Hydrogen sulfide

- Rotten egg smell
- From sulfur bacteria
- Can air lock water lines!!!
- Shock chlorinate well to eliminate from system
- Thoroughly clean water system
- Important to maintain 24-7 water sanitation

Parker Hannifin Filter

- Farm Guard Series
- 10 to 120 GPM
- Pleated filter
- Capacity of 180 string filters
- Can be washed, reused
- Casing will not dent, rust, chip or corrode
- Still need contact time (>20 minutes, pH 7-7.5) to precipitate iron

Water Sanitation

- Chlorine most common water sanitizer
- Most effective in acid form
- Affected by:
 - pH of water
 - Inadequate concentration
 - Water temperature, below 65 °F not very effective
 - Presence of organic matter, will hide bacteria
 - Exposure time, too short will not work
 - Growth stage and type of bacteria or biofilm present
- Bottom line-Using bleach does not mean that birds are drinking sanitized water

Water Treatment by Chlorination

- Rule of Thumb:
 - 3-5 ppm free available chlorine at end of line
- Test for total and free chlorine
 - Once these two numbers are the same reading,
 system is clean
- High chloride levels chlorine may not be best sanitizer choice

Chlorine Dioxide

- Strong oxidizer
- Effective over wide pH range (6-10)
- Target residual in drinking water-0.8 ppm
- Two types available
 - Ready to use products-5% solutions
- Products which must be made on site
 - Chlorine dioxide explosive in concentrations >10%
 - Therefore must inject an acid and sodium chlorite to form chlorine dioxide
 - This requires a two injectors
- Disadvantages
 - Expensive

New Chlorine Dioxide-

Allow to sit over night then ready to use at 1:128, Can't use ORP

Ozone

Advantages

- More effective than chlorine for inactivation of viruses
- Oxidizes iron, manganese and sulfides
- Controls taste, color and odors, great for
- Requires a very short contact time
- Biocidal activity not influenced by pH
- Only residual is oxygen

Disadvantages

- Very Expensive
- Systems not very farm friendly
- No sanitizing residual (only lasts 5-10 minutes)
- Water should be filtered after ozone treatment
- Otherwise water can become re-contaminated
- Beneficial to inject chlorine or H₂O₂ downstream

Hydrogen Peroxide

- Effective oxidizer
- Target- 25-50 ppm residual in drinking water
- Good for sanitizing pond or river water because it controls taste issues and no chlorine by-products
- Can be dangerous to store and handle, flammable
- Effectiveness deteriorates with storage
- Not as good at oxidizing iron and manganese
- Stabilized products like Proxy Clean last for weeks in stock solutions

Successful Water Sanitation Requires a Clean System

If water looks like this, there is room for improvement

Dirty Systems Need Effective Cleaning

Water line cleaned with acid-pH only 6.8

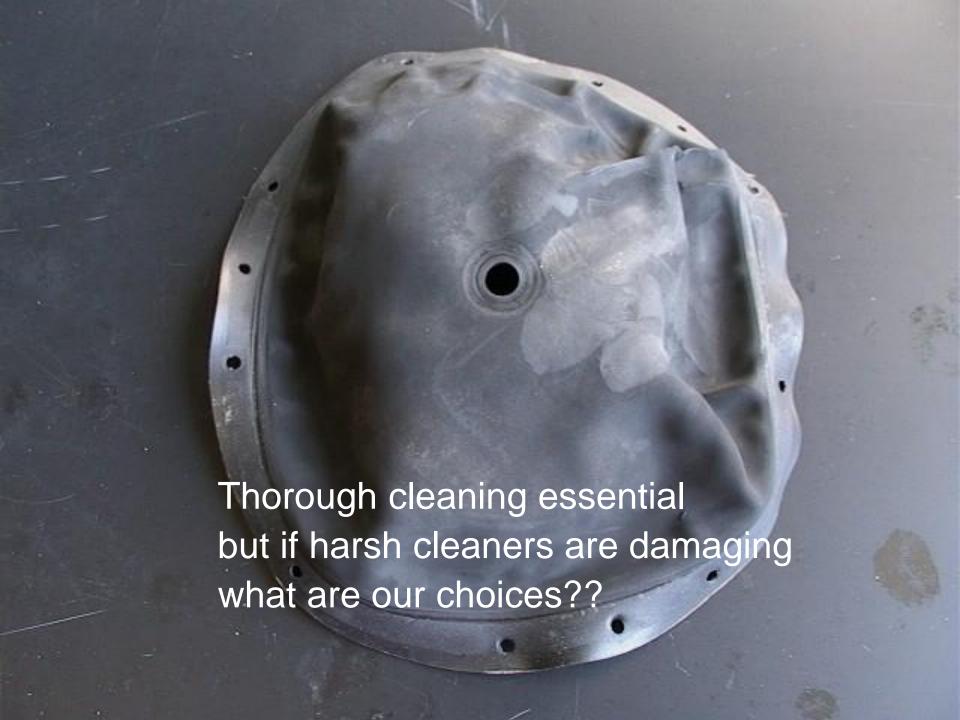
Same barn but this line cleaned with 3% Proxy Clean

Line Cleaning: The Crucial Step

- Clean water systems are essential
 - Improve daily water sanitation program
 - Reduce opportunity for disease to recur
- Ideal line cleaning products should:
 - Reduce microbial growth
 - Remove biofilm
 - Dissolve scale
 - Not damage equipment
- Do you have proper injection system?
 - Medicators only inject 1:128 at best a 0.78% solution
 - Medicators not suited for strong chemicals
 - Small submersible pumps ideal for injecting stronger solution
- Clean lines in 400 foot house-need 60 gallons

Water Line Cleaning

- After birds are gone, flush lines
 - Power flush is best, but any flush is good
 - Removes sediment, loosen bacteria, slime, etc.
- Make sure stand pipes are working
- Mix in trash can or 100 gal stock tank
 - 3 % 35 % H₂O₂ or Proxy Clean
 - 2% CID 2000
 - 2.5% Sterilex
- Fill lines using 1/12th hp submersible pump
- Sweep drinkers to charge drinker wells
- Leave 3% solutions in lines for 24 hours
- Leave 2% CID 4 hours


Line Cleaning

- Flush cleaner from lines
- De-scale lines with acid if water supply contains minerals:
 - Calcium or magnesium (> 80 ppm)
 - Iron or manganese (>0.5 ppm)
 - Sulfur (>80 ppm)
 - pH must be 5 or less to dissolve scale
 - Leave in lines 24 hours
- Flush acid from lines
- Follow acid with sanitizer such as bleach
 - 4-6 ounces/gallon stock solution
 - 1 ounce stock/gallon water
 - Proxy Clean stock solution- 4 ounces/gallon then 1:128
 - This last step can help keep biofilm from returning
 - May even prevent drinkers from "sticking" after cleaning

Objective

• Evaluate products using water that simulates worse case scenario in drinker systems

Materials and Methods Products

- Pro Clean
 - 50% stabilized hydrogen peroxide
 - 3 % solution tested
- ProxyClean
 - 50 % stabilized hydrogen peroxide
 - 3 % solution tested
- Sodium hypochlorite
 - 6 % product-household bleach
 - 1 ounce bleach/gallon of water
 - 12 ounces/gallons stock
 - 1 ounce/gallon water

Materials and Methods Products

- CID 2000
 - 20% stabilized hydrogen peroxide
 - 2 % solution tested
- Citric acid
 - 2 packs used to prepare a gallon of stock solution
 - 1 ounce stock added to gallon of water or 1:128
- Hydrogen Peroxide
 - 35 %, not stabilized
 - 3 % solution tested

Materials and Methods Products

- Pro Clean
 - 50% stabilized hydrogen peroxide
 - 3 % solution tested
- ProxyClean
 - 50 % stabilized hydrogen peroxide
 - 3 % solution tested
- Sodium hypochlorite-Bleach
 - 6 % product-household bleach
 - 0.78% solution tested
 - 12 ounces added to gallon water served as the stock solution
 - 1 ounce to gallon water or 1:128

Bacteria Results

	Pre	Post 4 H	Post 24 H
Treatment	(Log 10)	(Log 10)	(Log 10)
Control	7.017	7.10	7.38
Bleach 12	6.88	5.05	5.90
Bleach .78 %	6.98	5.03	5.14
Citric Acid	7.56	7.52	7.33
CID 2000 6.90		2.00	<1
H ₂ O ₂ 3%	6.74	5.45	1.97

Bacteria Results

	Pre	Post 4 H	Post 24 H
Treatment	(Log 10)	(Log 10)	(Log 10)
Control	7.017	7.10	7.38
PRC 3%	6.88	4.91	<1
PRC .78 %	7.38	5.69	4.62
PXC 3%	6.32	5.15	<1

Product Testing Conclusion

- Even strong bleach solution not effective on heavy microbial load
- Citric acid did not reduce bacteria
- 2 % CID 2000 most effective in 4 hours
- 3% ProxyClean, Hydrogen Peroxide needed 24 hours to effectively reduce bacteria
- Summary-To get the most out of line cleaning, use right concentration and leave in long enough to do the job

What mixes?

- Basic products- Add ammonia
 - Sulfa drugs
 - Penicillin
- Acidic products- Add citric acid
 - Tetracycline
 - Erythromycin
 - Vitamins
 - Amprolium

My birds have a slight snick..

• I want to run some iodine as an expectorant, should I stop chlorinating?

My birds have a slight snick..

- I want to run some iodine as an expectorant, should I stop chlorinating?
- Chlorine and iodine work well together
 - -If chlorinating use second pump to inject iodine
 - May not get a chlorine reading when running both

Alkalinity

- Refers to the amount and types of chemicals that can shift pH > 7
- Usually expressed as calcium carbonate (CaCO₃)
- Also dependent on bicarbonate, (HCO₃), and sulfate (SO₄)
- Poisons in nature usually alkaloid so high alkaline, content may back birds off water

What to do about Hardness

- Acidify drinking water
 - helps keep Ca in solution
 - Masks alkalinity taste concerns
- Klear Flo- Sequestering agent
 - Keeps Ca in solution
- Phosphate products also prevent scaling
- Water softener
 - Exchanges sodium for calcium

Alkaline Hydrolysis

- pH of >7.5 can impact insecticides
- pH range of 4 to 6 best for most insecticides
- Carbaryl (Sevin)

	pН	Half-life
	6	100-150 days
	7	24-30 days
_	8	2-3 days
	9	1 day

To lower pH add citric acid or PWT to spray water

Oxidation-Reduction Potential

- Measures the energy in water
- Free chlorine present- energy will be high
 - -(>600)
- Water dirty or no free chlorine, energy is low
 - Can even be a negative number
- Optimum ORP level- 650 to 750
 - Free chlorine levels of .5 to 1 ppm may be adequate

pH, ORP, Total and Free CL

рН	ORP	T C1	Free Cl	APC
6.86	20	0	0	1,250,00
6.47	425	5	2.5	>10
5.85	540	5	2.5	>10
5.17	615	5	2.5	>10
3.91 Bleach 8 oz	/705 /gallon stock	5 then 1:128	2.5	>10

PWT used to adjust pH

Food for Thought

- Chicken is ultimate opportunistic eater,
 "Eat fast before you are eaten!!"
- Nature made chicken's crop to hold seeds before digestion
- Commercial production has changed the diet
 - Easily digested full of fat, sugars, protein
 - Seeds are ground to enhance digestion
 - Partially cooked
 - Often contains animal by-products with questionable microbial quality- (Clostridium, etc.)
- Microbial quality of feed and environment ????
- Adding poor quality water to a full crop of feed could be inviting disaster

Conclusion

- Good water quality is essential for good bird performance
- Unfortunately it is rarely a given
- Water quality impacted by many factors such as products used and natural contaminants
- Understanding how factors impact each other can help one to make right decisions on water treatments
- Water system sanitation is essential for a healthy bird

Questions?

