

What are Mycoplasmas????? • Eaton et. al 1945 • primary atypical pneumonia (PAP) walking pneumonia • virus? (Eaton's Agent) • M.pneumonia (1963) • Lo et. al 1985 • AIDS patients • "novel virus" – VLIA • M. incognitus • L-form bacteria • Gram-positive bacteria that have lost cell wall

Mollicutes

- Tend to be host specific
- Humans, animals, plants, & insects

Naola Ferguson-Noel - March2020

College of Veterinary Medici UNIVERSITY OF GEO

Mollicutes

- Tend to be host specific
- Humans, animals, plants, & insects

Mycoplasmas of Pheasants

- Mycoplasma gallisepticum
- Mycoplasma synoviae
- Mycoplasma glycophilum
- Mycoplasma gallinaceum
- Mycoplasma pullorum
- Mycoplasma iners

Degenerative Evolution • Mycoplasmas did not evolve as simple organisms • Common ancestor with Gram + anaerobes (Clostridia closest bacterial relatives) • Cell wall lost during evolution 2.500 kb

Characteristics of Mycoplasmas Lack many metabolic pathways Complex nutritional requirements Require sterols (10 – 15% animal serum) Tend to grow slowly Tolerate thallium acetate

Characteristics of Mycoplasmas

- Colonize mucosal surfaces
 - · Respiratory and urogenital tract
- · Some can invade host cells

Characteristics of Mycoplasmas

- Hemagglutination of erythrocytes
 - M. gallisepticum, M.synoviae, m.meleagridis

Mycoplasma Pathogenesis

- · Usually do not invade
- Attach to mucosal surfaces
- Emit toxic products and invoke host response
- · Carrier state is usual

Possible Factors in **Pathogenesis of Mycoplasmas**

- Ciliostasis
- Depletion of cell nutrients
- Local toxins
- · Penetration of cells?
- · Stimulation of immunopathological reaction
- Effects on lymphoid cells & macrophages
 Antigen variation immune evaluation investive or georgia

Strain Variability

- Mycoplasma strains vary in:
 - Virulence
 - Tissue tropism
 - Antigenic makeup

Expression of Antigens

- Expression of surface antigens is variable
- Specific epitopes can be turned on or off
- Expression may be partial
- May explain testing problems and ability to persist in face of strong immune response

Possible Factors in Pathogenesis of Mycoplasmas

- Ciliostasis
- Depletion of cell nutrients
- Local toxins
- · Penetration of cells?
- Stimulation of immunopathological reaction
- Effects on lymphoid cells & macrophages
 Antigen variation immune evaluation of condition in the condition of the condition in the con

Strain Variability

- Mycoplasma strains vary in:
 - Virulence
 - Tissue tropism
 - Antigenic makeup

Avian Mycoplasma Diagnosis

- Serology SPA, HI and ELISA
- PCR conventional and real-time
- Culture
- Bioassay

Why is Control Important?...

• Clinical disease – pathogenic strains

Why is Control Important?... • Vertical transmission Formula is a set of control of third (white Ref.) Fig. 1. Egy transmission of Fatzur vaccinated children (plate bar). College of Verterinary Medicine Clisson NAMA & #elgyments (344) (1804(1)-2020(9) Dis. 2000 S. UNIVERSITY OF GEORGIA.)

Why is Control Important?...

- Disease complexes
- Economics...
 - Reduced weight gain & feed efficiency

Naola Ferguson-Noel - March2020

MG Economic Significance

- · Increased condemnations at processing
- Reduced weight gain & feed efficiency
- · More culls
- · Increased mortality
- Egg production losses
- Medication costs
- Vaccination costs
- · Surveillance costs

Naola Ferguson-Noel - March2020

Approaches to Control

- Keep it out
 - Surveillance
 - Quarantine and Slaughter
- · Live with it
 - Medication
 - Vaccines

The Case for Eradication...

- Better performance
 - Avoiding challenge vs protecting against challenge
- Economics impact on export and sales
- · Avoids complicating diagnostics
- Avoids some risk
- · Is absolute eradication feasible?

Naola Ferguson-Noel - March2020

The Case for Control...

- No farm is an island
- Eradication is a long and expensive process commitment and cooperation
- Avirulent strains

Naola Ferguson-Noel - March2020

Considerations

- Multiple age complexes
- · Dense poultry populations
- Economics (export)
- · Cooperation of industry
- Severity of disease/challenge

College of Veterinary Medicine UNIVERSITY OF GEORGI

Sources of Infection

- Egg transmission
 - Rate of transmission unpredictable
- · Horizontal transmission
 - Direct or indirect contact with infected birds
 - · Biological carriers
 - Mechanical carriers dust, droplets, feathers
 - Aerosol transmission possible over short distances

Naola Ferguson-Noel - March2020

Maintaining Mycoplasma Free Flocks

- · Use only negative replacements
- Single age farms, isolated if possible
- · Depopulate and disinfect between flocks
- Maintain good biosecurity
- Set up monitoring program

Naola Ferguson-Noel - March2020

Handling of Infected Breeders

- · Elimination of flock is safest
- · Isolate flock as much as possible
- Segregate eggs and chicks
- Egg transmission reduced over time (inconsistent)
- Effective medication may reduce MG and reduce egg transmission

MG	population
$\stackrel{\smile}{\sim}$	population
	College of
	Veterinary Medicine
تحمد	UNIVERSITY OF GEORG

Reduction of Egg Transmission

- Egg dipping
- · Egg heating
- Egg inoculation
- Medication may reduce transmission
- · Vaccination (may reduce shed)
- Rear progeny in small, isolated groups

Naola Ferguson-Noel - March2020

Handling Infected Progeny

- Keep progeny of infected breeders segregated and isolated
- · Use good husbandry practices
- · Use mildest vaccination program possible
- Prophylactic antibiotics may reduce problem and reduce risk of spread
- · Treatment relatively unsuccessful

Naola Ferguson-Noel - March2020

Medication

- Helps prevent clinical signs and lesions
- Reduces egg production losses
- · Reduces egg transmission?
- · Will not eliminate infection
- May reduce level of infection
- · Antibiotic resistance may develop

Immunizing Agents Available for MG Inactivated oil-emulsion bacterins Recombinant MG Vaccine Live vaccines F Strain ts-11 6/85

Reasons to Vaccinate

- · Prevent clinical disease
- Prevent egg production losses
- Reduce egg transmission
- Eradicate virulent field strains
- Reduce antibiotic usage

Naola Ferguson-Noel - March2020

Thank you Naola Ferguson-Noel, DVM, MAM, PhD University of Georgia, Poultry Diagnostic & Research Center 953 College Station Rd., Athens, GA 30602-4875 Phone: (706) 542-3068 Lab: (706) 542-5646 naolaf@uga.edu http://vet.uga.edu/avian